WFIRST Coronagraph Milestone #8: PIAACMC contrast demonstration

2016–11–08

Brian Kern (JPL)

Olivier Guyon (U of Arizona), Rus Belikov (NASA Ames)
Contributors

JPL:
Camilo Mejia Prada, Dan Ryan, Keith Patterson, Xin An, David Marx, Dan Wilson, Rich Muller, Hong Tang, Ilya Poberezhskiy, Bala Balasubramanian, Kent Wallace, Eric Cady, Robert Zimmer

U. of Arizona:
Olivier Guyon, Jennifer Lumbres

NASA Ames:
Rus Belikov, Eduardo Bendek, Dan Sirbu, Steve Bryson

NASA Goddard:
Qian Gong
Presented WFIRST coronagraph technology development work was carried out using funding from NASA SMD and STMD
Statement of milestone

- “PIAACMC coronagraph in the High Contrast Imaging Testbed demonstrates 10^{-8} raw contrast with 10% broadband light centered at 550 nm in a static environment; contrast sensitivity to pointing and focus is characterized.”

- **Status:**
 - Monochromatic contrast 2.6×10^{-8}
 - Dominated by incoherent light
 - Mostly tip-tilt jitter
 - Broadband contrast ~ 1.8×10^{-7}
 - Limited by time, not fundamentals
 - Broadband milestone target not yet met
Overview

- Monochromatic results summary
- Broadband results summary
- Sensitivities
- PIAACMC functional background
- Testbed components
 - Mirrors
 - Occulter
 - DM
 - Environment
- Modeling topics
- Unfinished topics
Monochromatic results

- 2.6×10^{-8}, dominated by incoherent light
 - Empirical tip-tilt sensitivity and measured tip-tilt jitter expected to produce \sim half this incoherent
 - Tip-tilt jitter is known to vary, may be entirely consistent
 - Should test polarizer (not yet in system)
 - TDEM “classic” PIAA testbed saw polarization problem at $\sim 10^{-8}$, probably where light source is launched into optical train
 - OMC testbed identified polarization complication from illumination front-end

1 DM, 1-sided, $\pm 6.5 \lambda/D$ before inserting field stop

Field stop needed below 10^{-7}
10% broadband results

- 1.8×10^{-7} in 10% broadband light centered at 550 nm
- Not dominated by incoherent light
 - Ambiguous distinction between coherent and incoherent
 - Incoherent decreases with iterations along with coherent to this point
- Wavefront control is realizing improvements more slowly than model
 - Likely a combination of calibration errors of both occulter and DM motion

1 DM, 1-sided, $\pm 6 \lambda/D$ before inserting field stop

![Graph showing mean contrast vs. r [lambda/D]](image)
WFE sensitivities

- Test sensitivity to Z2-Z11 on monochromatic solution
- Apply WFE to DM
 - Apply 50 pm – 250 pm rms surface (depending on mode), to produce ~ few 10^{-9} delta contrast
- Model of testbed as best known with testbed DM settings gives good agreement (red vs. black)
- Models run “from scratch” (testbed initial conditions but no feedback from testbed) give lower Z2-Z3 sensitivity
- Likely possible to include tip-tilt sensitivity in control to improve
 - Similar to HLC
 - Certainly potential for $10 \times$ improvement
PIAACMC basics

- PIAACMC is high-throughput, small IWA coronagraph
 - IWA = 1.3 λ/D
- “Gen 3” system design was optimized for low (good) tip-tilt sensitivity
- Novel components are aspheric PIAA mirrors and phase-only occulter (reflective)
- As designed, with low tip-tilt errors, science return was modeled to be very good

Phase-only occulter
150 μm diam, \pm 300 nm height
- Layout is single DM
 - Single-sided dark hole
- All light is absorbed at Lyot stop
- Field stop is available for high dynamic range
 - See dark hole near bright outer PSF / uncorrected half
• What components are well characterized and / or well modeled?
 – Modeling impacts do not include effects of errors in control model w.r.t. testbed

<table>
<thead>
<tr>
<th></th>
<th>Characterized</th>
<th>Modeled</th>
<th>Impact mono</th>
<th>Impact BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIAA mirrors</td>
<td>well</td>
<td>well</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>occulter</td>
<td>medium</td>
<td>low</td>
<td>tip-tilt sens?</td>
<td>?</td>
</tr>
<tr>
<td>DM</td>
<td>well</td>
<td>low</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>environment</td>
<td>medium</td>
<td>medium</td>
<td>tip-tilt?</td>
<td>no</td>
</tr>
</tbody>
</table>
Individual components: PIAA mirrors

- Mirrors were fabricated to spec
 - Single-point diamond turned
 - Inexpensive, fast
 - Measured against CGH
 - 20 nm rms surface requirement met
 - Gregorian telescope assembly

- Measurements on testbed refine interferometric testing
- Models say mirrors are fine

M1 surface errors M2 surface errors

[Graphs showing surface errors with blue = CGH and green = testbed]

wavefront stretch

330 nm P-V
82 nm P-V

The wavefront stretch for the mirrors is 330 nm P-V at camera and 82 nm P-V upstream of PIAA.
Individual components: PIAA occulter

- Gen 3 occulter fabricated at JPL Micro Devices Lab
 - PMMA on 2 mm thick fused silica, coated with Al
 - All-reflective, phase-only
 - 8 occulters on same substrate
- Occulter suite on testbed now has “global” +12% height scale factor error
 - Additional occulters on substrate with −20%, −10%, +10%, +20% scale factors relative to nominal, using −10% relative to +12% nominal error
- Detailed Gen 3 modeling to date only for scale errors
Individual components: DM

- Using Xinetics 48 × 48.3 DM
 - New DM, not used prior to WFIRST PIAA testbed
- Influence function consistent with thicker facesheet
 - Requires larger voltage swings to produce high spatial frequency features ("stiff")
 - At mid spatial frequencies, transfer function is 2-3 × lower than earlier modeling had been based on
- BB WFC solutions are seeing more voltage constraints than thin-facesheet models expected
 - Lesson learned for flight CGI DM is to clearly specify influence function req’ts

BB WFC voltage map
- 230 actuators hit constraints (1703 visible)
Testbed environment

- Measurement of star centroid with occulter out shows dominant 205-210 Hz power
 - 0.2 mas rms table-horizontal, 0.1 mas rms table-vertical
- 205-210 Hz line strength varies over ~ 10 minute timescales
 - Integrated power in line changes by $2-3 \times$
- Incoherent light in monochromatic dark hole also varies on similar timescales
Unfinished topics

- Continued BB wavefront control
 - May see significant improvement with “standard” operation
 - Factor of ~7 improvement in last week
 - Include Strehl / stroke mitigation in EFC
 - Revisit DM gain calibration
 - Feedback on model of occulter
 - Explore more of the existing occulters / different height scale factors

- Tolerance more varieties of occulter errors
 - Additional occulter with more test data is available

- Null with occulters using different scale factors
 - Milestone #3 style analysis should be repeated for Gen 3
 - Tolerance ability to calibrate the rest of the coronagraph for WFC
BACKUP
Rate of convergence

- New investigations into most effective wavefront control strategies
- How much of existing dark hole E-field to null in a single iteration
- When trying to null bulk of E-field, residual E-field in next iteration is higher, but contrast is reduced over long-term
• Need to be aware of Strehl ratio changes as wavefront control proceeds
• Broadband solution uses more stroke
 – Strel ratio lower by ~40% for broadband relative to mono
 – P-V ~ 50 V off of “flat”
 – Model does not predict as large stroke at high spatial frequencies as seen on testbed
• If only single wavelength is controlled, system is strongly chromatic, $\sim 10^{-6}$ over 10%
 • Assumes as-built mirror errors, known occulter global scale error, measured system phase and amplitude
Monochromatic contrast 8/31/16, +12% occulter

- Some incoherent intensity is not temporal variability at $f < \text{kHz}$

![Graphs showing total normalized intensity, temporal variance, and temporal minimum](image-url)