Circumstellar disk imaging with WFIRST: not just for wide-field surveys any more...

Tom Greene (NASA ARC) & WFIRST Coronagraph Team
AAS / WFIRST Session
7 Jan 2015
WFIRST Coronagraph enables new disk science

Extreme contrast (1E-9), small IWA, HST spatial resolution allow:

A. Visible light studies of zodiacal disks around nearby stars (~10 pc)
 - Measure planet & dust content and collisional activity in planetary systems
 - Diagnostic for future Earth-like planet imaging missions

B. Inner regions of young, large / massive debris disks resolved by HST, including systems with planets
 - WFIRST-AFTA probes these disks much closer to stars than HST (~140 mas vs. 0.4” – 1.7”) at HST wavelengths and resolution w/ higher contrast
 - Clear or dusty?; differences between systems with and without planets

C. Resolve the ~1 – 5 AU “asteroid belt" dust around many nearby stars detected by Spitzer and WISE in IR (> 50 zodi) and larger, cooler disks detected by Herschel.
Debris Disks Today with HST (Schneider 2014)
New frontier: Detect zodiacal disks

• Search for scattered visible light from disks down to ~10x the zodiacal dust content of the solar system
 ➢ Zodiacal disks come for “free” with planet search data

• Search down to the habitable zones (~1-2 AU) of stars within 10 pc

• Amount of dust measures interactions between rocky bodies:
 ➢ *Important to assess for future Earth-like planet imaging missions*

• Visible & unseen planets sculpt the dust dynamically

• WFIRST-AFTA visible + LBT-I mid-IR → grain albedo + area

• Only massive (~1000 * solar) debris disks have been resolved in scattered light so far: *WFIRST is >100x better!*
What do Zodiacal disks look like?

• Zodipic (Kuchner+ 2001, 2007) model of solar system zodical disk at 10 pc at $\lambda = 550$ nm
 - Zodiacal light surface brightness goes $\sim r^{-2.2}$
 - Red ellipse shows $r \sim 2$AU region (~ 200 mas with 14 mas / pixel)

Log Flux scale from $1E-11 - 1E-8$ Jy
(Sun would be $V = 41$ Jy at $d = 10$ pc)
WFIRST Zodiacal Disk Image Simulations

Simulate AFTA Coronagraph disk images to explore science potential

- Take advantage of the detailed coronagraph modeling work done at JPL
- WFIRST + coronagraph simulation results provided by John Krist (JPL):
 - PSF, occulting mask transmission, dark hole speckle field
 - Have done simulations for Hybrid Lyot and Shaped Pupil coronagraphs
- Simulate WFIRST zodiacal disk images:
 - Create model disk images with M. Kuchner et al. Zodipic 2.1
 - Convolve model with WFIRST coronagraph PSF
 - Multiply by occulting mask, photon conversion efficiency, field stop
 - Add photon noise and speckle noise = 0.1 x dark hole speckle field
Resolved 10 zodi disks detected at modest SNR

• Left: Simulated 24 hr WFIRST-AFTA-HLC image of 10 zodi disk around GV star at d=14 pc. Scale is 0.014 arcsec / pixel and 0 – 20 electrons
• Right: SNR of image at left, binned into 1.2 λ/D (4 x 4 pixels) resolution elements
47 UMa System with known RV planets (~Jupiter masses)
- G1V star at 14 pc
- Planet b has SMA = 2.1 AU, planet c has SMA = 3.6 AU
- Assume 30 zodi dust dust (628 zodi measured 3 sigma upper limit, Millan-Gabet et al. 2011)
- Assume incl 60 d, PA 45 d, pl. albedo 0.4, pl. orbit -90 d & 70 d

Simulation of a 10 hour exposure with HL coronagraph (0.4 mas jitter / 10x speckle suppression, 550 nm 10% BW)
- Gravitational dynamics are NOT included!
Value of disks + planets together

• Planets without zodiacal disks indicate little recent collisional activity, like our solar system

• Disks without planets indicate significant interaction of small bodies only, no large ones “made it”

• Disks and planets together will reveal the dynamics of their interactions via disk gaps & non-uniformities

• Neither disks nor planets indicate efficient clearing of the pre-planetary disk