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ABSTRACT

We report on new methods for evaluating realistic observing programs that search stars for planets by direct
imaging, where observations are selected from an optimized star list and stars can be observed multiple times.
We show how these methods bring critical insight into the design of the mission and its instruments. These
methods provide an estimate of the outcome of the observing program: the probability distribution of discov-
eries (detection and/or characterization) and an estimate of the occurrence rate of planets (η). We show that
these parameters can be accurately estimated from a single mission simulation, without the need for a com-
plete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide
tools to define a mission for a particular science goal; for example, a mission can be defined by the expected
number of discoveries and its confidence level. We detail how an optimized star list can be built and how suc-
cessive observations can be selected. Our approach also provides other critical mission attributes, such as the
number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend
strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.),
our methods are directly applicable to the design of such future missions and provide guidance to the mission
and instrument design based on scientific performance. We illustrate our new methods with practical calculations
and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant
starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass
planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004,
assuming a small fraction of JWST observing time (7%), η = 0.3, and 70 observing visits, limited by starshade
fuel.
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1. INTRODUCTION

Various proposals for direct-imaging searches for Earth-like
planets are now on the table (Guyon et al. 2008; Cash et al.
2008; Spergel et al. 2009; Soummer et al. 2009a). This paper
presents methods for guiding the development of the new
instrumentation that such searches will require. They can also
help optimize observing programs by scheduling observations to
maximize their impact. Using these new methods, we can predict
the outcome of a single observation or an entire observing
program and interpret the observational results. These tools
should be widely useful for studying, comparing, and optimizing
alternative direct-search concepts.

The completeness of a direct limiting search observation
(LSO) is the fraction of all possible planets of interest (POIs) that
satisfy the detection criteria. By definition, an LSO has sufficient
exposure time, texp,j on the j th star, to reach the systematic limit
of the instrument. For optical missions, an LSO is assumed
to achieve the desired photometric signal-to-noise ratio (S/N)
on the limiting source, which has magnitude magj + Δmag0,
where magj is the stellar magnitude and Δmag0 is the limiting
magnitude difference with the star (flux contrast), expected to
be determined by speckle instability (Brown 2005).

In the simplest picture, an LSO discovers any and all POIs
that satisfy two criteria at the time of the observation:

Δmag < Δmag0 (1)

and

s > IWA, (2)

where s is the angular separation between a planet and a star
and IWA is the inner working angle (angular radius of the real
or effective central field obscuration). This simplified picture
of a sharp dividing line between detectable and undetectable
planets has proven useful for measuring search power to first
order. Fidelity could be improved, if necessary, by adding more
complex detection criteria, such as a detection probability that
varies in a more complicated and realistic way over the field of
view.

In a common treatment, which we follow here, the POIs are
body-twins of Earth with orbits in the habitable zone.

Let a fraction η of all stars in the universe have a POI. The
list of candidate stars for the observing program is a subset of
all stars, and within this subset, the expected fraction is η, but
the actual fraction will vary. Also, we have limited knowledge
of η, a number that is both interesting scientifically and useful
operationally to schedule observations to maximize discoveries.
Therefore, we will draw distinctions when necessary between
the true value (ηtrue), which is unknown, the assumed value for
science operations (ηops), which is used to estimate discovery
probabilities, and the value estimated from the results of a search
program (E(η)).

Our new methods extend the original concept of direct-search
completeness for exoplanets (Brown 2004, 2005) for purposes
of optimizing the timing of revisits to previously searched stars,
increasing the realism of instrument comparisons, and providing
an estimate of η from the results of observing programs.
Meanwhile, Brown (2009a, 2009b) has extended completeness
studies to indirect detection by reflex astrometry, photometric
detection in the case of no occultations, and the estimation of
orbital parameters from Keplerian data sets.
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2. EVOLUTION AND ESTIMATION OF COMPLETENESS

2.1. Four Types of Completeness

Four types of completeness pertain to a program of LSOs:
virgin, dynamic, accumulated, and ultimate.

Until now, the scheduling of LSOs in mission studies
of direct-search power has been based on “virgin,” time-
independent, first-visit completeness c1,j , which is the com-
pleteness of the first LSO of star j (Brown 2004; Agol 2007;
Savransky et al. 2010). In this study, we include the possibility
of multiple LSOs of any target star.

A non-detection by an LSO rules out some fraction of possible
planets: those with sufficient angular separation and brightness
at the time t of the LSO to be detectable—if they existed. After
the LSO, a pool of possible planets may remain, comprising
planets that had not been ruled out by previous LSOs and also
were not detectable by the most recent LSO. As time goes
on, each planet in this pool moves along its unique orbit and
may become detectable at some future time. In this way, the
fraction of all possible planets that is detectable on the ith visit
to the j th star at time t—which is the dynamic completeness,
ci,j (t)—depends on the elapsed time after each of the i − 1
preceding LSOs.

Accumulated completeness (Ci,j ) is the sum-total complete-
ness of i LSOs of star j:

Ci,j ≡
i∑

l=1

cl,j (tl). (3)

Ci,j increases monotonically with i.
Ultimate completeness (C∞,j ) is the maximum value of Ci,j .

It is the value of completeness that would be accumulated from
an arbitrarily high number of LSOs spread arbitrarily over time:

C∞,j =
∞∑
l=1

cl,j (tl). (4)

C∞,j < 1 whenever some POI orbits are permanently fainter
than Δmag0 or permanently obscured inside IWA—or never
brighter than Δmag0 and located outside IWA at the same time.

2.2. Estimating Dynamic Completeness ci,j

All types of completeness are derived from ci,j , and all results
(probability of discovery and mission outcomes) are ultimately
based on this quantity.

Because the planetary position is determined by a transcen-
dental equation (Kepler’s Equation), ci,j must be estimated by
Monte Carlo trials. In these trials, we represent the universe of
POIs by a large random sample of N0 particular POIs, each of
which is defined by randomly chosen values for 10 parameters:
{a, e, M0, i, ωp, Ω, T , Rp, q, Φ}, where a is the semimajor axis,
e is the orbital eccentricity, M0 is the mean anomaly at some
definite time, i is the inclination angle, ωp is the argument of
periastron, Ω is the position angle of the ascending node, T is
the orbital period, Rp is the planetary radius, q is the geomet-
ric albedo, and Φ comprises the necessary subparameters for
defining the phase function.

In this paper, the POIs are Earth-twins on habitable-zone
orbits. The particular values of six parameters are drawn from
random deviates: 0.7

√
L � a � 1.5

√
L, 0 � e � 0.35,

and 0 � M0 � 2π (uniformly distributed; L is the stellar
luminosity); i, ωp, and Ω uniformly distributed on the sphere.

Three parameters are delta functions: Rp = R⊕, q depends on
the filter passband, and Φ is the Lambertian phase function. T
is given by a and the stellar mass via Kepler’s Third Law.

When estimating c1,j , for the first LSO, Δmag and s are
computed for all N0 POIs at, say, t = 0, when the orbital phases
of all POIs in the sample are equal to {M0}. Thereafter, record
is kept of the epoch of each LSO, ti>1, only for the POIs that
have not yet been eliminated and are still in play.

For the ith LSO, we identify and count the number of POIs
that satisfy Equations (1) and (2), Ni,j , producing

ci,j = Ni,j

N0
. (5)

Based on Equation (5), all types of completeness can be
computed with any required precision by appropriately choosing
the value of N0.

2.3. Rebound of ci,j

ci+1,j (t) rebounds following the ith LSO. ci+1,j (ti + ε) = 0,
where ε is a diminishingly small increment of time, and then it
rebounds toward a constant, asymptotic value, ci+1,j (∞), as the
orbits of still-possible POIs lose orbital phase coherence.

The blue points in Figure 1 show how c2,j rebounds after a first
LSO at t = 0 of HIP 29271 for IWA = 0.075 arcsec (THEIA;
Savransky et al. 2010), q = 0.26, and Δmag0 = 26 (typical
value; Brown 2005). The rebound resembles the response of the
output voltage for an underdamped, series, LRC circuit after a
step change in the input voltage. After a linear rise (curved
on a logarithmic plot), c2,j undergoes damped oscillations.
The details—rise time, damping time, and asymptotic value
c2,j (∞)—depend on the star’s particular mix of habitable-zone
orbits resolved by IWA. For different stellar mass, luminosity,
and distance, for other values of IWA and Δmag0, and for other
definitions of POIs, the rebound of c2,j will be qualitatively
similar to Figure 1, but with different details and numbers. For
example, other factors being equal, a star at larger distance
would have a longer rebound time, because the central field
obscuration (IWA) would limit the observation to planets
with wider separations, and therefore a longer time would be
necessary to loose orbit coherence.

When the next observation is being planned, we need to know
ci,j (t) for each star in play, and where i − 1 observations of
star j have already been performed. When i = 1, we would
use tabulated values of time-independent virgin completeness,
and no real-time computation would be required. When i > 1,
however, we may need an efficient function or procedure for
computing the values of ci,j (t).

The most accurate, brute-force method would perform a blue-
point-type calculation (see Figure 1) for every star in play every
time a new observation is planned. The number of times would
be of order the number of stars times the number of observations.
For example, the number of blue-point-type calculations would
exceed 105 for a program of 100 stars and 1000 LSOs, typical
for a 4 m class instrument with IWA = 0.075 arcsec. Monte
Carlo full-mission studies would be impractical, as each of the
400 blue points in Figure 1 took ∼5 s to compute on a 3 GHz
Intel Xenon processor running Mathematica 6. Therefore, we
must look at two approximate functions for ci,j (t), one of which
may be perfectly adequate for first-order scheduling studies.
They demand only one or four blue-point-type calculations
performed a number of times that is of the order of the number
of observations.
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Figure 1. Typical rebound of dynamic completeness c2,j (t) following the first limiting search observation (LSO) at t = 0. Blue: values calculated from Equation (5)
with N0 = 20,000, for Earth-like, habitable-zone planets around HIP 29271, assuming IWA = 0.075 arcsec, q = 0.26, and Δmag0 = 26. Red: the linear approximation.
Here, c2,j (∞) = 0.18 and breaktime = 5 × 107 s.

The first alternative approximation is a linear function,
ci,j (t) = slope × t for t < breaktime and ci,j (t) = ci,j (∞) for
t > breaktime. This is illustrated by the red curve in Figure 1.

We used the following algorithm to find the parameters
slope and breaktime ≡ ci,j (∞)/slope. The algorithm com-
prises four blue-point-type computations of ci,j (t). First, we
estimate ci,j (∞) by computing ci,j (1010 s). Second, we com-
pute ci,j (105.5 s) and use it to make a first estimate of the slope,
slope1 ≡ ci,j (105.5 s)/105.5 s. (The starting point t = 105.5

is somewhat arbitrary. It should be large enough to afford
an accurate value of ci,j according to the counting statistics
of Equation (5), but also confidently smaller than the true
value of breaktime.) Third, we compute a first estimate of
breaktime, breaktime1 = ci,j (1010 s)/slope1, and compute
ci,j (breaktime1), which produces second estimates of the break-
time and slope:

breaktime2 ≡ breaktime1 − ci,j (breaktime1) − ci,j (105.5 s)

slope1
,

(6)
and slope2 ≡ ci,j (1010)/breaktime2. Fourth, we compute
ci,j (breaktime2)—the fourth and last blue-point-type compu-
tation—and use it to produce the final estimates

breaktimeFinal ≡ breaktime2

− ci,j (breaktime2) − ci,j (breaktime1)

slope2
,

(7)

and slopeFinal ≡ ci,j (1010 s)/breaktimeFinal. (The linear func-
tion required about ∼20 s to calculate on a 3 GHz Intel Xenon
processor running Mathmatica 6.)

The second alternative approximation is a step function:
ci,j (t) = 0 for t < breaktime and ci,j (t) = ci,j (∞) for
t > breaktime, where breaktime ∼107 s for habitable-zone or-
bits and popular instrument concepts. For first-order investiga-
tions, accurate knowledge of the completeness rebound may not
be important to the outcome. The important thing is to avoid the
mistake that breaktime is zero or too small, an error which may

cause bogus observations to pile up on the high-completeness,
low-exposure-time stars. (The step function required ∼5 s
to calculate on a 3 GHz Intel Xenon processor running
Mathmatica 6.)

In Figure 2, the first (linear) approximation of ci,j (t) is
used to illustrate a hypothetical program of five LSOs to HIP
29271 starting at absolute time t = 106 s. (The abscissa here
is now linear.) Such approximations would be used only in
the scheduling process of a design reference mission (DRM),
where it may be necessary to compute dynamic completeness
for many stars on the fly. After the decision to observe a
particular star, Equation (5) would be used to produce an
accurate value for the record. Note that as the number of LSOs
of a star increases, the accumulate completeness converges on
the ultimate completeness, C∞,j .

3. THE PROBABILITY OF A DISCOVERY BY THE NEXT
LSO, P

After i − 1 unproductive LSOs of star j, (1 − Ci−1,j ) is the
fraction of all possible POIs that have not been ruled out and
are still in play. The fraction of the remaining POIs that the next
(ith) LSO at time t would detect is

Ki,j (t) = ci,j (t)

(1 − Ci−1,j )
. (8)

The probability of a discovery on the next LSO of star j is

Pi,j = η′
jKi,j (t), (9)

where η′
j is the Bayesian correction of the occurrence probability

η. η′
j is the probability that star j possesses a POI after taking

into account the contrary evidence of nj previous unproductive
LSOs with accumulated completeness Ci−1,j .

Bayes’s theorem states

η′
j ≡ P (H|E) = P (E|H)P (H)

P (E)
= (1 − Ci−1,j )η

1 − ηCi−1,j

, (10)

where the hypothesis H is that star j has a POI; the evidence E
is the lack of a discovery so far; P (E|H) = (1 − Ci−1,j ) is the
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Figure 2. Dynamic completenesses of five hypothetical LSOs of HIP 29271 at t = 106, 4 × 106, 1.6 × 107, 2.7 × 107, and 3.5 × 107 s. The virgin completeness
c1,j = 0.46 is an accurate value, independent of time and computed in advance of simulations, using Equation (5). The symbols c2−5,j are preceded by tildes to indicate
they are approximations. Such approximations would be used only in the selection process of a DRM, where it may be necessary to compute dynamic completeness
for many stars on the fly. After the decision to observe a particular star, Equation (5) would be used to produce an accurate value for the record. Note that as the number
of LSOs of a star increases, the accumulate completeness converges on the ultimate completeness, C∞,j .

conditional probability of E if H is true; P (H) = η is the prior
probability of H; and the marginal probability of E is

P (E) = P (E|H)P (H) + P (E|H)P (H)

= (1 − Ci−1,j )η + (1 − η) = 1 − ηCi−1,j , (11)

where H is the hypothesis that star j does not have a POI.
(P (E|H) = 1 and P (H) = 1 − η.)

The result for Pi,j is

Pi,j = ηci,j (t)

1 − ηCi−1,j

. (12)

For the case of no prior searches (i = 1, C0,j ≡ 0), the
probability of a discovery on the first search is ηc1,j , as expected.

We want to confirm numerically that Equation (12) accurately
estimates the probability of a discovery by the next LSO for
random values of the parameters, for example, η = 0.272673,
C1,j = 0.437671, and c2,j = 0.506385, for which P2,j =
0.156789. For this verification, we conduct Nobs = 200,000
independent LSOs, each involving N0 = 200,000 possible
POIs. Each LSO involves the following computational steps.

1. Randomly pick the serial number of the “real” POI: n =
B(η)I(1, N0), where B is a Bernoulli random deviate with
probability η, which yields the value 0 or 1, and I is a
uniform random deviate producing an integer in the range
1 to N0. (If the serial number is zero, it means the “star”
being observed does not have a POI.)

2. Perform a first LSO by selecting N1 = Round(C1,jN0)
random integers in the range 1 to N0, where the Round

function yields the closest integer to the argument. If n is
one of these N1 integers, then go back and repeat Steps 1
and 2, because we only want cases where the first LSO does
not make a “discovery.”

3. Perform a second LSO by randomly selecting N2 =
Round(c2,jN0) integers from the N0–N1 integers defined
by excluding the N1 integers in Step 2 from the set of all
integers 1 to N0. If n is equal to one of these N2 integers,
then we have a discovery; otherwise, not.

4. Repeat Steps 1 to 3 Nobs times and count the number of
discoveries, Ndisc.

5. Compute the empirical probability, Ndisc/Nobs, which
was 0.156845, 0.157050, and 0.156695 in three runs
we performed using the parameters above. These values
compare well with the theoretical value, P2,j and con-
firm Equation (12). (As a benchmark, one run required
20,000 s on a 3 GHz Intel Xenon processor running
Mathematica 6.)

4. APPLICATIONS OF P TO OBSERVING PROGRAMS

Two applications of P and Equation (12) must be sharply
distinguished. The first application is in the scheduling algo-
rithm for real or simulated observing programs, where we use
the discovery rate,

Zi,j = Pi,j

texp + OH
, (13)

as a merit function or science benefit/cost metric for optimizing
the observing program for discovery. In this application, η in
Equation (12) is ηops. (OH is any observational overhead time
that will be charged to the program, such as for calibration or
alignment.)

The second application of Equation (12) is in estimating the
probability distribution of discoveries for simulated observing
programs, as discussed below. In this application, η = ηtrue,
where ηtrue is the “true” value. In this context, ηtrue is a control
parameter. If ηops 	= ηtrue, the number of planets discovered by
an observing program may be less than optimal, because the
scheduling algorithm may not always choose, as the next star to
observe, the qualified star with the highest “true” value of the
merit function.

In both applications of Equation (12), Ci−1,j is the accu-
mulated completeness from all LSOs of star j prior to the
ith, each contribution computed as accurately as desired from
Equation (5).
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4.1. Probability Distribution of the Number of Discoveries,
pdf(m)

No matter what star j, nor what search i of that star, the kth
LSO in the overall observing program discovers u planetary
systems, where u ∈ {0, 1} is a Bernoulli random variable with
probability Pk , as given in Equation (12) using ηtrue and the
indices i and j corresponding to the kth LSO. (For each star (j),
multiple visits (i) are possible, so both i and j define the kth
LSO.) The probability density function (pdf) of u for the kth
LSO is

pdfk(u) = (1 − Pk)δ(u, 0) + Pkδ(u, 1), (14)

where δ(i, j ) ≡ 1 for i = j , and zero otherwise, is the Kronecker
delta.

An entire observing program, consisting of ntotal LSOs, where

ntotal =
nstars∑
j=1

nj , (15)

where nj is the total number of LSOs of star j and nstars is
the total number of stars observed, discovers m planets, where
m ∈ {0, 1, . . . ,ntotal} is the sum of ntotal Bernoulli random
variables, each with pdfk given by Equation (14). Therefore,
the pdf of m is the convolution (�) of pdfk for all k:

pdf(m) = pdf1(u) � pdf2(u) � · · · � pdfntotal
(u), (16)

where each successive convolution has the form

(pdfk � F)(n) ≡ (1 − Pk)F(n) + PkF(n − 1). (17)

Equation (16) offers a practical advantage for estimating the
outcome of a search program. Starting from a single simulated
observing program, it allows us to estimate theoretically the pdf
of the total number of discoveries. The alternative—running
many full simulations to build up an empirical estimate of the
pdf from the discovery results—is much less efficient.

4.2. Estimation of η

The pertinent record of a real or simulated observing program
is a set of ntotal data triplets re-indexed from i (LSO) and j (star)
to k (observation):

{ck, Ck, uk} ≡ {ci,j , Ci−1,j , ui,j }, (18)

for 1 � k � ntotal, where ui,j = 0 or 1 is the number of
discoveries by the ith LSO of the j th star. (If we assume that we
stop searching after a discovery, ui,j = 1 for at most one value
of i for any j.)

The logarithmic likelihood function L is the logarithm of the
probability of the set {uk} ≡ {ui,j } as a function of η:

L({uk}|η) =
ntotal∑
k=1

ln puk
=

ntotal∑
k=1

ln

(
ckη

1 − Ckη
uk

+

(
1 − ckη

1 − Ckη

)
(1 − uk)

)
. (19)

The maximum-likelihood estimate of the occurrence probabil-
ity, E(η), is the η-root of the equation

∂L({uk}|η)

∂η
= 0. (20)

The minimum variance bound (MVB) is the inverse of the Fisher
information near E(η):

MVB (E(η)) =
(

−∂2L({uk}|η)

∂η2

∣∣∣∣
η=E(η)

)−1

. (21)

We want to confirm that Equations (19)–(21) accurately
estimate η and its variance. To this end, we performed a
numerical experiment simulating 100,000 missions of 100
LSOs, according to the following steps.

1. Generated ntotal = 100 random data triplets for the left side
of Equation (18) as follows:

c = R, (22)

C = (1 − c)R, (23)

u = B
(

ηc

1 − ηC

)
, (24)

where R is a uniform random deviate on the range 0–1,
B(p) is a Bernoulli random deviate with probability p, and
η = 0.10.

2. Compute E(η) and MVB(E(η)) using Equations (19)–(21).

For the sample of 100,000 trials, we found

〈E(η)〉 = 0.101, (25)

ση = 0.039, (26)

and
〈
√

MVB(E(η))〉 = 0.042. (27)

Equation (25) is the mean value of η found using
Equation (20) in the 100,000 simulated missions. Equation (26),
the standard deviation of those values of η, is the empirical esti-
mate of the scatter in η determined by Equation (20). The square
of Equation (26) is the empirical variance. The Cramér–Rao
theoretical limit on the variance of any estimator of η is the
MVB given by Equation (21). We computed the MVB for each
simulated mission, and Equation (27) gives the mean value of
the square root of the MVB for the suite of 100,000 simulated
missions—computed for direct comparison with the empirical
value in Equation (26).

These results illustrate that the maximum-likelihood estima-
tor accurately recovers η from a record of the results of observ-
ing programs and that the accuracy of this estimator appears
to approach the Cramér–Rao limit (σ 2 ≈ MVB). (This Monte
Carlo experiment required 270 s on 56 2.66 GHz Intel Xenon
processors operating in parallel.)

5. ILLUSTRATIVE DESIGN REFERENCE MISSIONS
(DRMs)

The purpose of a DRM is to gauge the science operations
of a mission concept. To illustrate the new completeness
methods introduced in this paper, we now describe a ministudy
using simple DRMs to explore and measure the power of
the James Webb Space Telescope (JWST) to discover and
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Table 1
Spectrophotometric Parameters for Calculating Completenesses and Exposure

Times

Instrument Mode Nominal λ Resolving Zero Point Earth Geometric
(nm) Power (Jy) Albedo (q)

F070W 700 4 3043 0.232
F115W 1150 4 1766 0.187

NIRCam F140M 1400 10 1324 0.021
F150W 1500 4 1188 0.103
F162M 1625 10 1045 0.179

NIRSpec Prism 1150 31.7 1766 0.260

Notes. Zero points interpolated from values for VJHK filters (Leinert et al.
1998). We adjusted Earth’s effective albedo for prism spectroscopy at 1150 nm.

characterize Earth-like extrasolar planets using a starshade to
suppress scattered starlight (Cash et al. 2009; Soummer et al.
2009b). In this scenario, JWST and the starshade revolve in
coordinated orbits around the second Earth–Sun Lagrange point,
L2. The starshade operates on a ∼70,000 km sphere centered
on JWST. In a 3-year planet-finding mission, we assume enough
propulsion to slew the starshade 70 times to take up new
positions between JWST and target stars. We want the DRMs to
tell us about the science, for example, how many discoveries
to expect if we optimize the observing program, assuming
ηtrue = ηops = 0.3, say.

Other DRM inputs include: a science strategy; a definition
of POIs (same as Section 2.2, with q depending on filter as
given in Table 1); IWA = 0.085 arcsec, Δmag0 = 26, and
pointing restrictions γ1 = 85◦ (solar avoidance) and γ2 = 105◦
(starshade bright-side avoidance); an input catalog of stars;
exposure time calculators; typical overheads OH; and a merit
function—in this case, the discovery rate Z—which we use to
select the next star to search.

The science strategy is simple: we perform an LSO, and if
a likely POI is discovered, we immediately perform additional
spectrophotometry to characterize the body. Such immediate
follow-up reduces the risk of a newly discovered POI becoming
undetectable before it can be characterized and avoids the
difficulty of trying to recover it with inadequate knowledge
of its orbit (Brown et al. 2007). If we discover a POI, we cease
further LSOs of that star. If we do not find one, we move the
starshade to the next target star, but we return to a star already
searched if and when it once again offers the highest value
of Z .

The LSO is a deep image using whichever NIRCam filter
offers maximum Z . We call this filter the preferred filter, and it
varies from star to star. The possible filters are listed in Table 1.

After an LSO finds a potential POI, we obtain images through
the four non-preferred NIRCam filters for that star, and take a
low-resolution spectrum with NIRSpec. We use exposure time
calculators for NIRCam and NIRSpec, based on parameters
from the instrument teams, to achieve S/N = 5 on a source of
magnitude magj + Δmag0 for the LSOs, and magj + Δmagmedian
for the follow-up filter photometry and spectroscopy, where
magj is the apparent magnitude of star j, and Δmagmedian is the
median magnitude difference between the star and the universe
of possibly detected POIs for that star. (If Δmagmedian > Δmag0,
we use Δmag0.)

At this stage of the study we do not try to refine our
understanding of the exposure time calculation beyond the
current estimates by the instrument teams (M. Rieke et al.
2009, private communication; P. Jakobsen et al. 2009, pri-

Figure 3. Sphere of starshade operations, centered on JWST, shown here on the
vernal equinox. Green: permitted pointings for γ1 = 85◦ and γ2 = 105◦. Red:
forbidden pointings. As seen from above and as time passes, stars revolve on
the starshade sphere around the +ẑ axis (north ecliptic pole) in the clockwise
direction. Depending on a star’s ecliptic latitude b, it may be observable for one
or two periods per year, or for the entire year (b > 85◦). Blue: a typical TPF-C
target star from Brown (2005, HIP 92043, b = +43.◦4). Black: other TPF-C
stars. Cyan: the Sun, which is fixed in this L2 coordinate system (−x̂ toward
the Sun, +ŷ in the direction of Earth’s orbital motion).

vate communication). We use standard parameters based
on instrument requirements. There may be better observing
modes for this particular application (e.g., involving detector
sub-arrays).

We interpolate standard stellar magnitudes and zero points
to the effective wavelengths of each NIRCam filter and the
NIRSpec prism, starting from the VJHK magnitudes from
NStED (nsted.ipac.caltech.edu/) and the VJHK zero points from
Leinert et al. (1998). We used a near-infrared spectrum of
Earth calculated by S. Seager (2010, private communication)
to estimate the effective geometric albedo q of Earth at the
wavelengths and resolving powers of each instrument modes.
These parameters are listed in Table 1.

As illustrated in Figure 3, each potential target star is
continuously observable only for a limited period of time, once
or twice a year, depending on its ecliptic latitude (b). The total
time costs of observing a star—itemized in Table 2—must fit
into a single observability period for that star. Some 26 of the
117 target stars (Brown 2005) used in an earlier study of the
coronagraphic Terrestrial Planet Finder (TPF-C) are qualified
according to this criterion. These stars constitute the input
catalog for these DRMs (Table 3).

To determine the preferred filter for LSOs, we use
Equation (5) and the procedures of Section 2.2 to calculate
virgin completeness c1,j for each of the 26 qualified stars using
samples of N0 = 40,000 POIs. We do this separately for each
of the five filters, because of the dependence of q on wavelength
and resolving power. Next, we use Equations (12) and (13) to
compute P1,j and Z1,j , using OH = 10 hr as our estimate of
the time cost of the fine alignment of the starshade, which we
assume is incurred by each new observation with a different
instrument, or of a different star. For each star j, we select the

http://nsted.ipac.caltech.edu/
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Table 2
Observing Sequence and Typical Time Costs for a Single Visit of the Starshade to a Target Star

Step Activity Observing Time Cost Clock Time Cost

1 Final alignment of JWST, starshade, and target star 10 hr 10 hr
2 LSO through preferred NIRCam filter 4.8 × 104 s 4.8 × 104 s
3 Analyze data for discovery 7 days
4 Final alignment of JWST, starshade, and target star 10 hr 10 hr
5 Images through four non-preferred NIRCam filters 1.4 × 105 s 1.4 × 105 s
6 Analyze data to prepare for spectroscopy 7 days
7 Final alignment of JWST, starshade, and target star 10 hr 10 hr
8 Spectrum using NIRSpec 1.9 × 105 s 1.9 × 105 s

Total with discovery 4.9 × 105 s 1.7 × 106 s
Total without discovery 8.4 × 104 s 6.9 × 105 s

Notes. Overhead costs (1, 3, 4, 6, 7) are fixed. Exposure times (2, 5, 8) are median values for the 26 stars in the input
catalog. With no discovery in step 3, only steps 1–3 are executed during a visit to a target star. With a discovery, all
the eight steps are executed. During the analysis steps (3, 6), JWST conducts observations for other programs; only the
starshade remains aligned with the target star for this program.

Table 3
The Input Catalog of Target Stars, Ranked in Descending Order of the Discovery Rate on the First LSO (Z1)

Disc. HIP Type L Distance b(◦) LSO LSO Max Max c1 C∞ P1 Z1

Rate Filter texp Time Cont.
(pc) Obs.

1 71681 K1 V 0.61 1.35 −43 F070W 3.2 6.12 6.38 0.8 1 0.24 −5.19
2 8102 G8 V 0.47 3.65 −25 F115W 4.03 6.13 6.29 0.76 1 0.23 −5.31
3 71683 G2 V 2.2 1.35 −43 F070W 2.43 6.12 6.38 0.55 1 0.17 −5.34
4 3821 G0 V 1.2 5.95 47 F115W 3.94 6.14 6.41 0.59 1 0.18 −5.4
5 99240 G6/8 IV 1.5 6.11 −45 F115W 4.12 6.16 6.4 0.56 1 0.17 −5.47
6 108870 K4/5 V 0.2 3.63 −41 F150W 4.48 6.13 6.37 0.65 1 0.19 −5.53
7 22449 F6 V 2.6 8.03 −15 F115W 3.88 6.15 6.26 0.39 0.96 0.12 −5.57
8 19849 K0/1 V 0.41 5.04 −28 F115W 4.69 6.16 6.3 0.64 1 0.19 −5.64
9 15510 G8 III 0.71 6.06 −58 F115W 4.68 6.18 6.53 0.63 1 0.19 −5.65

10 2021 G1 IV 3.9 7.47 −65 F070W 4.2 6.15 6.63 0.34 0.92 0.1 −5.7
11 27072 F6.5 V 2.3 8.97 −46 F115W 4.47 6.25 6.4 0.41 0.98 0.12 −5.73
12 1599 G0 V 1.2 8.59 −58 F115W 4.71 6.25 6.53 0.5 1 0.15 −5.76
13 64394 G0 1.3 9.15 33 F115W 4.81 6.3 6.32 0.47 1 0.14 −5.85
14 57757 F8 3.4 10.9 0.69 F115W 4.33 6.23 6.24 0.27 0.88 0.08 −5.85
15 12777 F8 2.2 11.2 32 F115W 4.64 6.31 6.32 0.36 0.99 0.11 −5.87
16 96100 G9 V 0.41 5.77 81 F115W 4.99 6.2 7.42 0.56 0.97 0.17 −5.9
17 105858 F7 V 1.4 9.22 −47 F115W 4.91 6.33 6.41 0.47 1 0.14 −5.92
18 73184 K4 V 0.26 5.91 −4.4 F150W 5.05 6.2 6.25 0.34 0.76 0.1 −6.17
19 70497 F8 3.9 14.6 60 F115W 4.75 6.41 6.56 0.17 0.81 0.051 −6.26
20 23693 F6/7 V 1.4 11.7 −79 F115W 5.18 6.53 7.42 0.33 0.91 0.098 −6.29
21 77952 F0 III/IV 9.6 12.3 −42 F070W 4.3 6.23 6.38 0.073 0.4 0.022 −6.41
22 29271 G6 V 0.83 10.2 −82 F115W 5.41 6.53 7.43 0.32 0.81 0.095 −6.49
23 114622 K3 V 0.28 6.53 55 F150W 5.34 6.27 6.49 0.27 0.68 0.081 −6.5
24 50954 F2/3 IV/V 5.0 16.2 −68 F115W 4.98 6.57 6.7 0.11 0.68 0.032 −6.61
25 40702 F5 V 6.8 19.4 −75 F070W 5.29 6.66 7.41 0.076 0.61 0.023 −7.01
26 86614 F5 5.5 22.00 84 F070W 5.6 6.93 7.46 0.048 0.67 0.014 −7.48

Notes. Times in log seconds. “Max time” is the time cost of the full observing sequence in Table 1. “Max cont. obs.” is the maximum continuous observing time
for ecliptic latitude b for γ1 = 85◦ and γ2 = 105◦. P1 is the probability of a discovery on the first LSO, from Equation (12), and Z1 is P1 divided by the sum of
LSO texp and 10 hr for alignment, from Equation (13). The value of Z1 is given in log discoveries per second.

filter with the highest value of Z1,j as the preferred filter for
LSOs of that star (listed in Table 3).

Next, we determine the universe of possible LSOs. For
the preferred filter only, we continue to compute ci>1,j using
Equation (5) until the sample of N0 POIs is effectively exhausted.
This yields 26 lists of dynamic completenesses, in sequence,
one list for each of the 26 stars—some 2075 values of ci,j

in all. Again using Equations (12) and (13), we convert these
lists of ci,j into a full list of possible LSOs in the form of
vectors {HIPk , ik, Pk , Zk}, where 1 � k � 2075 is the index for
LSOs introduced in Section 4.1, and the items are the Hipparcos

number of the star, the number of this visit to that star, and the
discovery probability and rate for that visit.

At the start of a DRM, the prioritized observing program is
the list of 2075 LSO vectors sorted in descending order of Zk .
(Table 4 lists the top 80 LSOs for the current illustration.) We
expect to perform only 70 LSOs—but we do not know which
ones. How far down the list a DRM reaches is determined by the
random discoveries as the DRM unfolds. That is, we determine
the outcome of each LSO in turn—discovery, yes or no, with
possible follow-on observations and alternative time costs in
Table 2—by interrogating a Bernoulli random deviate with
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Table 4
Record of a Typical DRM

k kDRM HIP i Pk Zk Discovery k kDRM HIP i Pk Zk Discovery

1 1 71681 1 0.24 −5.19 No 41 37 57757 3 0.039 −6.17 No
2 2 8102 1 0.23 −5.31 Yes 42 38 105858 2 0.075 −6.19 No
3 3 71683 1 0.17 −5.34 No 43 . . . 71683 4 0.022 −6.22 . . .

4 4 3821 1 0.18 −5.40 No 44 39 12777 3 0.046 −6.24 No
5 5 99240 1 0.17 −5.47 Yes 45 40 2021 4 0.029 −6.26 No
6 6 108870 1 0.19 −5.53 No 46 41 70497 1 0.051 −6.26 No
7 7 22449 1 0.12 −5.57 No 47 42 23693 1 0.098 −6.29 No
8 8 19849 1 0.19 −5.64 No 48 43 57757 4 0.029 −6.30 No
9 9 15510 1 0.19 −5.65 No 49 44 1599 3 0.043 −6.31 No

10 10 71683 2 0.079 −5.66 Yes 50 45 96100 2 0.065 −6.31 No
11 11 2021 1 0.10 −5.70 No 51 46 108870 3 0.032 −6.32 No
12 12 27072 1 0.12 −5.73 No 52 . . . 8102 3 0.022 −6.32 . . .

13 13 1599 1 0.15 −5.76 No 53 47 27072 4 0.030 −6.34 No
14 14 3821 2 0.077 −5.77 No 54 48 4394 3 0.045 −6.35 No
15 15 22449 2 0.070 −5.79 No 55 49 71681 3 0.017 −6.35 No
16 . . . 99240 2 0.079 −5.79 . . . 56 . . . 99240 4 0.022 −6.35 . . .

17 16 71681 2 0.054 −5.84 No 57 50 22449 5 0.019 −6.36 No
18 17 64394 1 0.14 −5.85 No 58 51 70497 2 0.040 −6.37 No
19 18 57757 1 0.080 −5.85 No 59 . . . 3821 4 0.019 −6.37 . . .

20 19 12777 1 0.11 −5.87 No 60 52 15510 3 0.035 −6.38 No
21 . . . 8102 2 0.059 −5.90 . . . 61 53 12777 4 0.033 −6.39 No
22 20 96100 1 0.17 −5.90 No 62 54 2021 5 0.020 −6.41 Yes
23 21 2021 2 0.063 −5.91 No 63 55 77952 1 0.022 −6.41 No
24 22 105858 1 0.14 −5.92 No 64 56 105858 3 0.045 −6.42 No
25 23 27072 2 0.073 −5.96 No 65 57 19849 3 0.032 −6.42 No
26 . . . 71683 3 0.040 −5.96 . . . 66 58 57757 5 0.020 −6.45 No
27 24 22449 3 0.044 −6.00 No 67 59 70497 3 0.031 −6.48 No
28 25 108870 2 0.065 −6.01 No 68 60 29271 1 0.095 −6.49 No
29 26 57757 2 0.055 −6.02 No 69 61 73184 2 0.048 −6.49 No
30 27 1599 2 0.075 −6.06 No 70 62 22449 6 0.014 −6.49 No
31 28 12777 2 0.069 −6.07 No 71 . . . 71683 5 0.012 −6.50 . . .

32 29 15510 2 0.071 −6.07 No 72 63 23693 2 0.060 −6.50 No
33 30 3821 3 0.038 −6.08 Yes 73 64 114622 1 0.081 −6.50 No
34 . . . 99240 3 0.041 −6.08 . . . 74 65 27072 5 0.021 −6.50 No
35 31 2021 3 0.042 −6.09 No 75 66 1599 4 0.026 −6.52 No
36 32 19849 2 0.068 −6.09 No 76 67 77952 2 0.017 −6.52 No
37 33 64394 2 0.074 −6.13 No 77 68 12777 5 0.022 −6.56 No
38 34 27072 3 0.047 −6.15 No 78 69 57757 6 0.016 −6.56 No
39 35 22449 4 0.030 −6.16 No 79 70 64394 4 0.028 −6.56 No
40 36 73184 1 0.10 −6.17 No 80 . . . 2021 6 0.014 −6.57 . . .

Notes. k: order of top 80 LSOs in terms of discovery rate Z; kDRM: order of 70 LSOs executed in this example DRM; i: number of
this LSO of this star; Pk : probability of discovering a POI in this LSO; Zk : log discovery rate of this LSO; ellipses indicate that this
LSO was not performed in this DRM due to a previous discovery.

probability P and interpreting “1” as a discovery and “0” as no
discovery. Each discovery deletes from the observing program
all the pending LSOs of a star—meaning those with i greater
than the visit number i of the LSO that produced the discovery.
These deletions promote the lower priority LSOs of other stars
into higher positions on the list. To investigate this behavior
and its ramifications, we conduct a Monte Carlo experiment of
500,000 DRMs.

Table 4 provides an example DRM in the form of the LSOs
actually executed in one DRM run and the discoveries actually
made—five in this case. We use it to illustrate the method of
deriving the theoretical probability distribution of m from the
probabilities Pk of a single DRM. We collect the 70 values of
PkDRM for 1 � kDRM � 70 in Table 4 and follow the recipe
in Section 4.1 to obtain the theoretical pdf(m) represented by
the dots in Figure 4. For comparison, the histogram in Figure 4
shows the empirical pdf(m) based on the actual values of m from
500,000 DRMs.

Figure 4. Comparison of the theoretical and empirical pdf(m). Dots: the
theoretical pdf estimated from the 70 values of Pk of the actual LSOs in the
single example DRM in Table 4. Histogram: the empirical pdf from the actual
results for m in 500,000 DRMs. (The histogram has been normalized to 1.0.)
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Table 5
DRM Results for 〈m〉, σm, and σ〈m〉 for the Expected Number of POIs

Discovered

DRM Empirical Theoretical

〈m〉 σm σ〈m〉 〈m〉 σm σ〈m〉
Example DRM 5.132 · · · · · · 5.21 2.15 · · ·
500,000 DRMs 5.132 2.06 0.003 5.129 0.09 0.0001

Notes. Empirical results are based on counting the number of discoveries
in Monte Carlo experiments where discoveries were decided by Bernoulli
random deviates. Theoretical results use the methods of Section 4.1 to
estimate pdf(m) from the individual LSO probabilities (Pk), and the results
are—or are derived from—that distribution. (The highest precision is
achieved by the mean of the 500,000 individual theoretical results for 〈m〉.)

Table 5 compares the means, standard deviations, and stan-
dard deviations of the means—〈m〉, σm, and σ〈m〉—for the results
ensuing from Table 4, which encompass both the example DRM
and the 500,000 DRMs computed from the same suite of poten-
tial or actual LSOs (1 � k � 2075 or 1 � kDRM � 70). The
highest precision is achieved by the mean of the 500,000 indi-
vidual theoretical results for 〈m〉. We see that our new method
produces accurate theoretical estimates of 〈m〉 and σm from a
single DRM and avoids the onerous alternative, which is to
conduct a large number of DRMs to obtain empirical results.

The 500,000 DRMs ensuing from the prioritized LSOs in
Table 4 offer additional insights into the science operations of
the JWST starshade mission. The most likely number of unique
stars searched is 23 (ranges 22–25). The median number of
visits per star is 3. The total JWST observing time used by a
DRM is (7.6 ± 1.3) × 106 s, and the total number of LSOs
is 70 (here, this is the limiting parameter). Note that the total
observing time corresponds to only ∼7% of the total JWST

observing time. The most likely probability of zero discoveries
is 0.004 (ranges 0.003–0.006).

Table 6 gives the data triplets defined in Equation (18), which
we use to estimate ηtrue = 0.30 ± 0.12, where the quoted error
is the square root of the MVB.

A last note on this ministudy. We have not treated the recovery
times of ci,j discussed in Section 2.3 because these example
DRMs are “dilute,” meaning the LSOs account for only a small
fraction of all the observations of JWST. In a “dense” DRM,
with every LSO competing to be the next observation of the
telescope, recovery time is important. Here, however, we can
assume that a buffer of at least ∼107 s can conveniently pad
the time between any two visits of the same star, which ensures
adequate ci,j recovery.

6. SUMMARY

In this paper, we have extended completeness-based metrics
and algorithms for direct exoplanet searches to include multiple
visits, estimating the probability distribution of search results
and the occurrence rate of extrasolar planets. These extensions
open the way for improved scheduling decisions, more real-
istic expectations for candidate instruments and missions, and
enhanced science returns.

Preliminary DRMs for a starshade mission to enable
Earth-like planet searches with JWST suggest a viable program
for <107 s of observing time. About five discoveries and spec-
tral characterizations are expected if η = 0.3. Soon, we hope,
the Kepler mission will provide a first estimate of the true value
of η.

The authors thank Jay Anderson, Massimo Robberto,
Elizabeth Barker, Marsha Rieke, and Doug Kelly for help with
the NIRCam parameters; Jeff Valenti, Jason Tumlinson, Peter

Table 6
Data Triplets for Estimation of η from Results of the Typical DRM

k ck Ck uk k ck Ck uk k ck Ck uk

1 0.8038 0 0 25 0.1759 0.6484 0 48 0.1203 0.6833 0
2 0.7574 0 1 26 0.1681 0.2672 0 49 0.04000 0.9398 0
3 0.5537 0 0 27 0.2123 0.5008 0 50 0.04858 0.7929 0
4 0.5950 0 0 28 0.2043 0.3599 0 51 0.1264 0.1697 0
5 0.5560 0 1 29 0.1932 0.6266 0 52 0.08750 0.8198 0
6 0.6484 0 0 30 0.09530 0.8049 1 53 0.08603 0.6926 0
7 0.3886 0 0 31 0.1171 0.5334 0 54 0.05295 0.7275 1
8 0.6446 0 0 32 0.1827 0.6446 0 55 0.07265 0 0
9 0.6266 0 0 33 0.2121 0.4711 0 56 0.1190 0.6811 0

10 0.2199 0.5537 1 34 0.1264 0.6184 0 57 0.07973 0.8273 0
11 0.3442 0 0 35 0.07820 0.7147 0 58 0.05505 0.6267 0
12 0.4061 0 0 36 0.3361 0 0 59 0.09337 0.2960 0
13 0.5008 0 0 37 0.1120 0.4353 0 60 0.3181 0 0
14 0.2099 0.5950 0 38 0.2154 0.4657 0 61 0.1448 0.3361 0
15 0.2067 0.3886 0 39 0.1284 0.5642 0 62 0.03500 0.8414 0
16 0.1360 0.8038 0 40 0.07705 0.6505 0 63 0.1806 0.3261 0
17 0.4711 0 0 41 0.1697 0 0 64 0.2701 0 0
18 0.2672 0 0 42 0.3261 0 0 65 0.05180 0.8227 0
19 0.3599 0 0 43 0.07945 0.5473 0 66 0.06625 0.8257 0
20 0.5590 0 0 44 0.1126 0.7131 0 67 0.05485 0.07265 0
21 0.1893 0.3442 0 45 0.1813 0.5590 0 68 0.05650 0.7786 0
22 0.4657 0 0 46 0.07942 0.8242 0 69 0.04180 0.6818 0
23 0.2123 0.4061 0 47 0.07785 0.7449 0 70 0.06988 0.8035 0
24 0.1193 0.5953 0

Notes. k here is kDRM in Table 4. Pk in Table 4 can be recovered from ck and Ck here using Equations (12) and (18)
and η = ηops = 0.3.
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with starshade parameters. They thank Sara Seager for discus-
sions and providing the atmospheric models used to calculate
the albedos of Earth. Thanks to Christopher Burrows and Dmitry
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