

Project report 1/24/2013

- D Content:
 - 1 slide on telescope & detector temperature [slide 2]
 - WF imaging performance [slides 3..11]
 - GRS grism status [slide 12]
 - IFU design & packaging status [slide 13]
 - Stray light study status [14]
- J Kruk:
 - Filter set [15..17]

Telescope temperature and detector optical cutoff

- Baseline for the report is T = 270K, optical cut-off = 2.0 μ m
 - These are separate topics
- Telescope: Potential post-study report activities at JPL and Exelis to determine if lower T operation is feasible:
 - Update thermal model to optimize for 250K
 - Update high fidelity model of the secondary mirror to incorporate additional construction features
 - Testing of composite coupons at 250K or below
 - Cold box testing of the 120 deg development models of the AMS/FMS and the SMSS (also an SMST if available). If all are available would encompass all the composite bonds and joints
 - NDE before and after; thermocouples and acoustic monitoring during testing
 - Need to select thermal profile: Example 2 cycles at 270, followed by cycles at 260, then 250 and perhaps down to 240 to develop margin
 - Model composite laminate and fittings to characterize performance at 250K
 - Develop overall thermal survival limits
 - Develop thermal stability requirements
- After report, studies of detector optical cutoff & FPA temperature will continue
 - General approach is to start with simpler and passive thermal solutions
- Solutions can be found in GEO for moving detector optical cutoff redward

Optics performance – wide field instrument

- Wide field imaging performance
 - layout
 - Optics description
 - Spot diagram (imaging)
 - Rms vs. wavelength
 - Diffraction encircled energy
 - Wavefront map
- Status of IFU
- Status of GRS grism
- Status of stray light study

Wide field focal plane layout

- Using realistic H4RG package spacings
 - 2.5mm in x
 - 8.564 mm in y
- Sapphire window in front of focal plane assembly (FPA)
 - Geo radiation environment
- Ea. active area is
 0.1249 degrees
 (4088 pixels)
- 0.110"/pixel

Channel field layout for AFTA-WFIRST wide field instrument

6x3 H4RG "packed" @ 0.11"/p, 0.281 sq.deg

O Field Axis

Moon (average size seen from Earth)

HST [all instruments]

JWST [all instruments]

Wide Field layout table

packed & window		WideField		
npix [1 side of SCA]		4088		
pixel size	mm	0.010		
x gap size	mm	2.500		
y gap size	mm	8.564		
pixel scale	"/p	0.110		
nx		6		
ny		3		
total x	deg	0.788		
total y	deg	0.427		
active area	deg ²	0.281		
focal length	m	18.75149		
aperture	m	2.36		
system f/#		7.946		
obscured fraction		0.300		
А	m ²	3.981		
A - omega est.	m ² deg ²	1.118		
Mpix		300.8		
field size x	mm	257.78		
field size y	mm	139.77		
x gap angle	deg	0.0076		
y gap angle	deg	0.0262		
chip size	mm	40.88		
chip angle	deg	0.1249		

Wide field layout

Optics description

- Instrument optics: F1, M3, filter, F2, detector window
 - M3 and filter are only non-flat optics
 - M3 is off axis anamorphic asphere
 - Same form as HST/Costar corrector mirrors; larger
 - Filter S1 has Zernike correction terms (plus sphere)
 - S2 is pure sphere
 - Detector window (sapphire) is radiation shield
 - Also limits thermal parasitic input to FPA
- Filter wavelengths not settled;
 - Y, Z, J, H, Kshort, Wide filters plus GRS grism
 - 0.8-1.2um (over wide, R2.5) 'example' bandpass used in baseline design

0.8000 1.0000 1.2000

Spot diagram

RMS wavefront error for 9 field points vs. wavelength

Diffraction encircled energy

Wavefront map – 1.0um

	3.35E-002
Sampled ea. $0.02x0.02^{\circ}$; meets goal of max 0.035λ rms	3.14E-002
	2.94E-002
	2.73E-002
	2.52E-002
	2.32E-002
	2.11E-002
	1.90E-002
	1.70E-002
	1.49E-002

1.29E - 002

GRS grism status

- Initial design in hand, poor imaging performance
 - Several times diffraction limit at some wavelengths and field points
 - 1.3-2.0um bandpass
 - Some ideas for improvement, in work
- May need to limit wavelength range, combination of field and bandpass limiting performance
 - Recall this is orders of magnitude more field, and higher dispersion than prior (e.g. HST) slitless dispersion modes

IFU design & packaging status

- Working to SNAP specifications
- 20 0.15" x 3" slices
- Effectively 20x20 samples, 0.15"x0.15", 3x3" FOV
- 0.6-2.0um
- R(2pixel) ~100
- Optical train breaks down into modules:
 - Telescope & relay (increase f/# to feed slicer)
 - Slicer at relayed focal plane
 - Pupil imaging mirrors relay to pseudoslit focal plane
 - Spectrograph: entrance slit, collimator, prism assembly, camera mirror, FPA (could be 1k x 1k)
- In work, front end most critical to define overall payload configuration (wide field, coronagraph interfaces)

NASA

Stray light study status

- Picking up from prior telescope plus initial instrument concept stray light work
- Confirmed initial results
- Adding mirror scatter (3nm rms for T1,T2)
 - Typical clean-room (but not 'heroic' level) particulate contamination model will also be included here
- Moving to new instrument configuration as described above

Filter Set

Jeff Kruk/Chris Hirata

Filter questions

- Strawman filter set (next slide) is a compressed version from DRM1/2.
- Adjust overlap for photo-z precision?
 - Save this optimization for after this report?
- Add new filters based on WFC3 experience?
 - Main difference based on Jason's statistics was use of 'medium' width filters
 - Would mean adding a second wheel
 - Are there compelling scientific arguments to make at this time, or defer this to a later report?

Strawman filter set

Filter	λmin	λcenter	λmax	Δλ	R	Overla p
Z	0.760	0.869	0.977	0.217	4	0.050
Y	0.927	1.06	1.192	0.265	4	0.061
J	1.131	1.293	1.454	0.323	4	0.074
Н	1.380	1.577	1.774	0.394	4	0.091
Ksuprsho rt	1.683	1.842	2.0	0.317	5.81	0.111
W	0.927	1.485	2.0	1.03	1.44	
GRS grism	1.3	1.65	2.0	0.7		
blank						