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Recommended Precursor Observations

 HST precursor observations

— HST/WFC3/UVIS + ACS observations for pre-WFIRST
astrometry

— HST/WFC3J/IR time series observations for photometry/
astrometry pipeline code development

« Ground-based IR microlensing survey to measure
lensing rate and select WFIRST-AFTA fields

* Development of Microlensing Expertise
— HST and AO follow-up of current planet detections
— Kepler (K2) and Spitzer parallaxes

— Develop microlensing analysis methods
* 1 (out of ~50) ground-based planetary light curve not modeled
« Possibly many stellar binary + planet light curves not recognized



Lens System Mass and Distance from
Microlensing Light Curves

* binary lens light curve gives mass ratio, q, and separation, s
(in units of R¢ )

* t- depends on M,, but also on v, and D,

t.=R,/v, where R, = \/4GMLDSx(1 - x)/c¢* and x=D, /D,
* There are two ways to improve upon this with light curve data:

— Planetary light curves usually give source radius crossing
time, t.

— Determine the angular Einstein radius : 6= 0.4/t = tzu
where 6. is the angular radius of the star and u,, is the
relative lens-source proper motion

— Measure the projected Einstein radius, 7 , with the
microlensing parallax effect (due to Earth’s orbital motion).
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~__ Lens System Properties

observer\

« Einstein radius : 6z= 6.t-/t. and projected Einstein radius,
— 6. = the angular radius of the star
— I from the microlensing parallax effect (due to Earth’s orbital motion).
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Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

Sourc

e Finite source effects
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Finite Source Effects & Microlensing
Parallax Yield Lens System Mass

* If only 6 or ;. is measured,
then we have a mass-distance
relation.

« Such a relation can be solved if
we detect the lens star and use
a mass-luminosity relation

—This requires HST or ground-based
adaptive optics

* With 6, ., and lens star
brightness, we have more
constraints than parameters

mass-distance relations:
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Lens+Source Solutlon

« Offset consistent in the
F814W, F555W, and
F438\ data:

— Ax = 1.25 pixels = 50 mas
— Ay = 0.25 pixel =10 mas
— FLUX: (left)  (right)

* F814W 3392 e 3276 e

- F555W 2158 = 3985 e
- F438W  338¢e 1029 e
. f=0.51

. f,=0.35

. f,=0.25

HST BVI observations imply
M. =0.63 M,
M, =17 Mg

Centroid Shift (mas)

M/ M,

observed separation of 51 mas confirms
planet model prediction of 54.3+3.7 mas




Parallax and Relative Proper Motion

. . 1
Microlensing parallax 7, = — and
rE
relative proper motion u, = O — 0.
e
t, L

are both 2-d vectors — and they are parallel

T is often measured more precisely in 1 direction (Earth’s
acceleration direction) than the other

A measurement of . improves the precision of ||
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Terrestrial ylensing Parallax Measures Masses
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OGLE-2007-BLG-224L mass, M, = 0.056 + 0.004 M, (Gould et al. 2009)
D, =525+40pcandv,_-113 £ 21 km s’
Multi-site observations needed!!




Geosynchronous Microlensing Parallax
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Bright Lens Stars Detected in WFIRST

Frames
L A ) ll 1 1 TP rrnl
- All Detections (Main Sequence) -
- Planet Mass to 20% .
0.1 =

* The brightness of the lens can be
combined with a mass-luminosity
relation to yield the lens system mass

* The direction of the u,, helps
determine ||

 Masses of faint lens stars, brown 0.05
dwarfs and stellar remnants are
harder to determine.

M/M,,



Lens-Source Motion from Space

Simulated HST images:

» Lens-source proper motion
giVGS eE = :ureItE

* U= 8.420.6 mas/yr for
OGLE-2005-BLG-169

» Simulated HST ACS/HRC
F814W (/-band) single orbit
image “stacks” taken 2.4
years after peak
magnification

— 2x native resolution
— also detectable with HST
WFPC2/PC & NICMOS/NIC1

« Stable HST PSF allows clear
detection of PSF elongation
signal

« A main sequence lens of any
mass is easily detected (for
this event)

raw image PSF subtracted binned



Astrometrlc Mlcrolensmg
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Image separation is ~1 mas or less, but the centroid moves, too. The effect is
very small (~0.1 mas) except for black hole lenses (i.e. Sahu HST programs).

Long time baseline needed for a precise measurement — we need to know the
source proper motion to high precision.



Early HST Optical Observations of
WFIRST Fields

8-10 year time baseline WFIRST—-NRO Fields & Extinction Map
4 I | I I I I I I | I 15
, _ _ - WFIRST-AFE ields 3
Relative proper motions for faint - centra Molml 1
sources — resolved or nearly § - s .
2 |l - - " u

resolved in early observations

Long baseline for source proper
motion — needed for astrometricx 0
microlensing

~750 orbits for all WFIRST ML fields. .,

A smaller program will allow a test of
astrometry from WFIRST data,
which has high S/N due to —4
~40,000 observations
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Measure the Microlensing Rate in
Target Fields with an IR Survey

MOA-II mlcrolensmg rate maps

rate per star
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MOA-II measurements show maximum lensing rate at / = 1°, but this
depends on extinction. Existing models are too simplistic to capture the

detailed rate structure in / and b
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Ground-based IR Microlensing Survey

« WFIRST will go much deeper than a ground-based

survey
« We want to know how the lensing rate depends on source
magnitude
» Get rate of rare high magnification events => >1000 events

* VVV survey on Vista has too few observations
» But telescope is capable if we could get a lot of time

 UKIRT
* Need 2-3 hrs per night, 5 months per year for 3+ years

 Namibia Telescope

« Sumi proposal (got to 2" round this year)
* H4RG detectors from WFIRST test program



New Photometry/Astrometry code needed

HS P -hand

These images are from MACHO fields with low extinction
WFRIST-AFTA fields will be closer to the plane with 2-3 % the stellar
density

Proper motion of neighbor stars will be a significant source of
photometry errors

A time series of HST/WFC3/IR data will allow us to test photometry code



Blow-up of HST/WFCJ/IR Image

HST J-band




Microlensing Survey Stars Will Not Be Isolated

* Proper motion of neighboring stars will contribute to
photometry noise
« We want a WFIRST-AFTA exoplanet microlensing pipeline

that generates
* Photometry
» Astrometry
A catalog of detector defects

* Develop exoplanet microlensing photometry+astrometry
pipeline pre-launch using a time series of HST/WFC3/IR

data
« 3 epochs needed to get both proper motion and parallax



Microlensing Expertise

» Pre-2003 — microlensing yields only mass ratio and separation/R,
« 2006 — lens identification and mass measurement from HST follow-up

« 2008 — microlensing can yield lens masses and orbital inclination

— Microlensing parallax signals are stronger for binary and planetary events
than for single lens events

« 2010-ish — circumbinary planet

« 2014 — planet in strong stellar binary system
— perhaps some planets have been missed

« # of Dark Energy Scientists = 102x(# of Microlensing Scientists)
— Most major observing programs have no or only small US component
—But US (ND and OSU groups) lead in microlensing theory & analysis

» Analysis of real data is key to developing expertise, so
—More HST and Keck AO follow-up of planetary microlensing events
— Satellite parallaxes with Spitzer, Kepler or other spacecraft far from Earth
— Support of ongoing microlensing observing programs



