Cosmic Ray Dosage and Shielding
in GEO



Outline

* |nitial shielding study

* Interactions with HgCdTe
— Cleaning with Sample-Up-The-Ramp
— In-flight vs ground processing

* Time variability of radiation environment

e Future work
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Initial Shielding Study

* Three cases:
1. Simple aluminum sealed box
2. Al/Pb sealed box

3. Box with lid displaced
* What gets in w/o direct line-of-sight trajectory
* Proxy for open light path with lid = l[ast mirror in path
e Use annual-average electron flux distribution
in GEO-synch orbit

Calculations done by Mike Xapsos of GSFC radiation branch
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Electron Flux (#/cm?*sec > E)
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Case 1: sealed Al box — e- flux
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WEFIRST Electron FLuxes: Case 1, Simple Hollow Box
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For reference: proton rate at L2 is ~5/cm?/s — about the red line above
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Photon Flux (#/cm?*sec > E)

Case 1: sealed Al box — vy flux

WFIRST Photon FLuxes: Case 1, Simple Hollow Box
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Photons produced by high-energy tail of e- distribution; few produced after
first few mm of e- path length.



Case 2: Al/Pb sealed box — e- flux

WFIRST Electron FLuxes: Case 2, Al/Pb Hollow Box
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Order of Al/Pb doesn’t matter for electrons
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Case 2: Al/Pb sealed box — Y flux

WFIRST Photon FLuxes: Case 2, Al/Pb Hollow Box
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Putting Pb on outside increases photon flux by 10X
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Y flux - continued

* Convolve the photon spectrum with weighted
mean of Hg,Cd,Te photo-electron and
scattering cross-sections:

— ~5.2 events/cm?/s
 Roughly comparable to proton flux at L2

* W/in striking distance of enough shielding

— 5. 1mmAIl+1.6mmPb gives net e-/Y event rates 2X
proton rate at L2, or 3X L2 for total rate
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Electron Flux (#/cm?*sec > E)

Case 3: displaced lid — e- flux

WEFIRST Electron FLuxes: Case 3, Hollow Box with Offset Lid
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Need multiple labyrinth seal or window in light path



CR removal by “Sample up the Ramp”

* Read detector continuously throughout exposure.

* |n principle, CRs can be removed by dropping
individual detector readouts.

* Even minimume-ionizing charged particles leave
large signal: easily detected and flagged
* Potential complication:

— Small amounts of charge deposited in pixels adjacent
to main track

— Photon conversions that deposit only a little charge in
a pixel
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CR removal continued

* Processing individual pixel readouts on-board
is demanding but straightforward in principle

— Some risk if detection algorithm is not robust

— Cleaning adjacent pixels requires much more
processing power

* |f a large subset of samples are downlinked,
then pixels adjacent to clearly detected events
can be pruned on the ground.

— Easier to adapt to idiosyncracies of data
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Examine CANDELS data

* CRs are primarily protons, but WFC3 IR
detector is otherwise representative

* Wrote custom SUTR algorithm to process
archival WFC3 IMA files.

— First flag samples with 4.5 sigma jumps in rate

— Also flag same sample in adjacent pixels
— Refit count rates, excluding flagged samples
— Histogram residuals to fits
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Results for residuals to SUTR fit

Other residual counts
10° Residual counts adjacent to CRs —

Residual CR Counts

Counts in cleaned image

No. of pixels
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For protons, no significant sub-threshold charge deposited in adjacent pixels
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Time Variability
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Future work

* Calculate shielding properties of composite
material

— Lower Z than Al, so less bremsstrahlung
* Calculate shielding of suitable optical materials
* Evaluate more realistic enclosure geometries

e Set up more detailed model of detector,
propagate electrons properly to assess track
characteristics

* Obtain more information on time variability.
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